Robust source and mask optimization compensating for mask topography effects in computational lithography.

نویسندگان

  • Jia Li
  • Edmund Y Lam
چکیده

Mask topography effects need to be taken into consideration for a more accurate solution of source mask optimization (SMO) in advanced optical lithography. However, rigorous 3D mask models generally involve intensive computation and conventional SMO fails to manipulate the mask-induced undesired phase errors that degrade the usable depth of focus (uDOF) and process yield. In this work, an optimization approach incorporating pupil wavefront aberrations into SMO procedure is developed as an alternative to maximize the uDOF. We first design the pupil wavefront function by adding primary and secondary spherical aberrations through the coefficients of the Zernike polynomials, and then apply the conjugate gradient method to achieve an optimal source-mask pair under the condition of aberrated pupil. We also use a statistical model to determine the Zernike coefficients for the phase control and adjustment. Rigorous simulations of thick masks show that this approach provides compensation for mask topography effects by improving the pattern fidelity and increasing uDOF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending SMO into the lens pupil domain

As semiconductor lithography is pushed to smaller dimensions, the process yields tend to suffer due to subwavelength imaging effects. In response, resolution enhancement technologies have been employed together with optimization techniques, specifically source mask optimization (SMO), which finely tunes the process by simultaneously optimizing the source shape and mask features. However, SMO ha...

متن کامل

Optimal 3D phase-shifting masks in partially coherent illumination.

Gradient-based phase-shifting mask (PSM) optimization methods have emerged as an important tool in computational lithography to solve for the inverse lithography problem under the thin-mask assumption, where the mask is considered a thin two-dimensional object. As the critical dimension printed on the wafer shrinks into the subwavelength regime, thick-mask effects become prevalent and thus thes...

متن کامل

Advanced mask aligner lithography: new illumination system.

A new illumination system for mask aligner lithography is presented. The illumination system uses two subsequent microlens-based Köhler integrators. The second Köhler integrator is located in the Fourier plane of the first. The new illumination system uncouples the illumination light from the light source and provides excellent uniformity of the light irradiance and the angular spectrum. Spatia...

متن کامل

Pixelated source mask optimization for process robustness in optical lithography.

Optical lithography has enabled the printing of progressively smaller circuit patterns over the years. However, as the feature size shrinks, the lithographic process variation becomes more pronounced. Source-mask optimization (SMO) is a current technology allowing a co-design of the source and the mask for higher resolution imaging. In this paper, we develop a pixelated SMO using inverse imagin...

متن کامل

Fast evaluation of Photomask Near-Fields in Sub-Wavelength 193nm Lithography

Sub-wavelength lithography places a serious limitation on the conventional ”thin mask” approximation of the field immediately behind the patterned mask. This approximation fails to account for the increasingly important topographical effects of the mask or ”thick mask” effects. This approximation of the photomask near-fields results from the direct application of Kirchhoff Boundary Conditions, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 8  شماره 

صفحات  -

تاریخ انتشار 2014